
Prepared By Dr. Satyanarayana. Mummana, Professor, LIET

UNIT-III SCHEMA REFINEMENT & NORMALIZATION

Types Of Anomalies, Concept Of Functional Dependency, Normalization, Advantages ,Types

Of Normal forms(1NF, 2NF And 3NF), Boyce-Codd Normal Form(BCNF), Fourth Normal

Form(4NF) .Lossless Join And Dependency Preserving Decomposition.

SCHEMA REFINEMENT

The Schema Refinement refers to refine the schema by using some technique. The best

technique of schema refinement is decomposition. Normalisation or Schema Refinement is a

technique of organizing the data in the database. It is a systematic approach of decomposing

tables to eliminate data redundancy and undesirable characteristics like Insertion, Update and

Deletion Anomalies. Redundancy refers to repetition of same data or duplicate copies of same

data stored in different locations.

Anomalies: Anomalies refers to the problems occurred after poorly planned and normalised

databases where all the data is stored in one table which is sometimes called a flat file database.

Problems Caused by Redundancy: Anomalies refers to the problems occurred after poorly

planned and unnormalised databases where all the data is stored in one table which is

sometimes called a flat file database. Let us consider such type of schema.

Storing the same information redundantly, that is, in more than one place within a database,

can lead to several problems:

Redundant storage: Some information is stored repeatedly.

Update anomalies: If one copy of such repeated data is updated, an inconsistency is created

unless all copies are similarly updated.

Insertion anomalies: It may not be possible to store some information unless some other

information is stored as well.

Deletion anomalies: It may not be possible to delete some information without losing some

other information as well.

Problem in updation / updation anomaly If there is updation in the fee from 5000 to 7000,

then we have to update FEE column in all the rows, else data will become inconsistent

Insertion Anomaly and Deletion Anomaly- These anomalies exist only due to redundancy,

otherwise they do not exist.

Prepared By Dr. Satyanarayana. Mummana, Professor, LIET

InsertionAnomalies: New course is introduced C4, But no student is there who is having C4

Subject

Because of insertion of some data, It is forced to insert some other dummy data.

Deletion Anomaly: Deletion of S3 student causes the deletion of course. Because of deletion

of some data forced to delete some other useful data.

Solutions to Anomalies: Decomposition of Tables – Schema Refinement

There are some Anomalies in this again

Prepared By Dr. Satyanarayana. Mummana, Professor, LIET

What is the Solution ?

 Solution : decomposing into relations as shown below

To Avoid Redundancy and problems due to redundancy, we use refinement technique called

Decomposition.

Decomposition: Process of decomposing a larger relation into smaller relations. Each of

smaller relations contain subset of attributes of original relation

Rollnum

Name

Age

Book# Subject

101 Anil 20 B1 NETWORKS

102 Abshik 21 B2 ALGORITHMS

103 Bhanu 20 B10 DBMS

101 Anil 20 B21 ECOM

NULL B30

FUNCTIONAL DEPENDENCIES:

Association among attributes is called functional dependency. It is represented by A→B.A

functional dependency (FD) is a kind of IC that generalizes the concept of a key. Let R be a

relation schema and let X and Y be nonempty sets of attributes in R. We say that an instance r

of R satisfies the FD X → Y 1 if the following holds for every pair of tuples t1 and t2 in r: If

t1.X = t2.X, then t1.Y = t2.Y.An FD X → Y essentially says that if two tuples agree on the

values in attributes X, they must also agree on the values in attributes Y. A→B in a relation

holds true if two tuples having the same value of attribute A also have the same value of

attribute B

Prepared By Dr. Satyanarayana. Mummana, Professor, LIET

Example: Rno→name,Aadharnum→Ename ,Pnumber →{Pname, Plocation}, Dno→Dno,

Dname, Rno,name→age

Reasoning about functional dependencies:

Armstrong’s Axioms: Armstrong axioms define the set of rules for reasoning about functional

dependencies and also to infer all the functional dependencies on a relational database. Various

axioms rules or inference rules:

Inference Rule (IR):

• The Armstrong's axioms are the basic inference rule.

• Armstrong's axioms are used to conclude functional dependencies on a relational

database.

• The inference rule is a type of assertion. It can apply to a set of FD(functional

dependency) to derive other FD.

• Using the inference rule, we can derive additional functional dependency from the

initial set.

The Functional dependency has 6 types of inference rule:

Primary axioms: If X ⊇ Y, then X → Y

1. Reflexive Rule (IR1): In the reflexive rule, if Y is a subset of X, then X determines Y.

Example: X = {a, b, c, d, e} Y = {a, b, c}

2. Augmentation Rule (IR2): If X → Y, then XZ → YZ for any Z.

The augmentation is also called as a partial dependency. In augmentation, if X determines Y,

then XZ determines YZ for any Z. Example: For R(ABCD), if A → B then AC → BC

3. Transitive Rule (IR3): If X → Y and Y → Z then X→ Z

In the transitive rule, if X determines Y and Y determine Z, then X must also determine Z.

Some additional rules or secondary or derived axioms:

4. Union Rule (IR4): If X → Y and X → Z, then X → YZ.

Union rule says, if X determines Y and X determines Z, then X must also determine Y and Z.

5. Decomposition Rule (IR5): If X → YZ, then X → Y and X → Z.

Decomposition rule is also known as project rule. It is the reverse of union rule. This Rule says,

if X determines Y and Z, then X determines Y and X determines Z separately.

6. Pseudo transitive Rule (IR6): If X → Y and YZ → W then XZ → W

In Pseudo transitive Rule, if X determines Y and YZ determines W, then XZ determines W.

Why Armstrong axioms refer to the Sound and Complete ?

Prepared By Dr. Satyanarayana. Mummana, Professor, LIET

By sound, we mean that given a set of functional dependencies F specified on a relation schema

R, any dependency that we can infer from F by using the primary rules of Armstrong axioms

holds in every relation state r of R that satisfies the dependencies in F.

By complete, we mean that using primary rules of Armstrong axioms repeatedly to infer

dependencies until no more dependencies can be inferred results in the complete set of all

possible dependencies that can be inferred from F.

Attribute Closure:

Attribute closure of an attribute set can be defined as set of attributes which can be functionally

determined from it.

NOTE:

 To find attribute closure of an attribute set-

 1) Add elements of attribute set to the result set.

 2) Recursively adds elements to the result set which can be functionally determined from the

elements of result set.

Algorithm: Computing the Attribute Closure of Attribute Set X

Input: Let F be a set of FDs for relation R.

Method:

 1.Closure X+ = X;

 2.for each FD :Y→Z in F do:

 if Y ⊆ X+ then // if Y is contained in X+

 X+=X+ ∪ Z // add Z to X+

 end if

 end for

 3.Return X+ // return closure of X

Output: Closure X+ of X under F

Types of Functional dependencies:

• Non-Trivial functional dependency

• Trivial functional dependency

• Fully Functional Dependency

• Partial Functional Dependency

• Transitive functional dependency

• Multivalued functional dependency

Prepared By Dr. Satyanarayana. Mummana, Professor, LIET

1. Non-trivial Functional Dependency: If A → B has a non-trivial functional dependency if B is not

a subset of A. When A intersection B is NULL, then A → B is called as complete non-trivial.

Completely non-trivial functional dependency:-If X->Y and X∩Y=Ф(null) then it is called

completely non-trivial functional dependency. In Non-trivial functional dependency, the dependent

is strictly not a subset of the determinant.

Example: AB→C , ID → Name,

roll_no name age

42 smith 17

43 john 18

44 peter 18

42 raju 17

Here, roll_no → name is a non-trivial functional dependency, since the dependent name is not a

subset of determinant roll_no

Similarly, {roll_no, name} → age is also a non-trivial functional dependency, since age is not a

subset of {roll_no, name}

2. Trivial Functional Dependency:If A → B has trivial functional dependency if B is a subset of A.

In Trivial Functional Dependency, a dependent is always a subset of the determinant i.e. If X → Y

and Y is the subset of X, then it is called trivial functional dependency

The following dependencies are also trivial like: A → A, B → B

AB→AB. For example,

roll_no name age

42 smith 17

43 john 18

44 peter 18

Here, {roll_no, name} → name is a trivial functional dependency, since the dependent name is a

subset of determinant set {roll_no, name}

Similarly, roll_no → roll_no is also an example of trivial functional dependency.

3. Fully Functional Dependency:

If X and Y are an attribute set of a relation, Y is fully functional dependent on X, if Y is functionally

dependent on X but not on any proper subset of X.

Example :In the relation ABC ->D, attribute D is fully functionally dependent on ABC and not on

any proper subset of ABC. That means that subsets of ABC like AB, BC, A, B, etc cannot determine

D. Example :

Prepared By Dr. Satyanarayana. Mummana, Professor, LIET

supplier_id item_id price

1 1 540

2 1 545

1 2 200

2 2 201

1 1 540

2 2 201

3 1 542

From the table, we can clearly see that neither supplier_id nor item_id can uniquely determine the

price but both supplier_id and item_id together can do so. So we can say that price is fully

functionally dependent on { supplier_id, item_id }. This summarizes and gives our fully functional

dependency .{ supplier_id , item_id } -> price

4. Partial Functional Dependency: A functional dependency X→Y is a partial dependency if Y is

functionally dependent on X and Y can be determined by any proper subset of X.A Functional

dependency X→Y is a partial dependency if, X is a part of candidate key and Y is a non-key

attribute(s).

Let R(A,B,C) and AB=candidate key.

A-> C is a partial dependency (where C dependson a part of the candidate key).

AB->C is a full dependency (where c depends on the entire candidate key).

Example

R(ABCDE)

F: {AB->C, C->D, B->E }. Find partial dependency.

Solution

AB+ = {A,B,C,D }

C+={ C,D }

B+= {B,E}

=>AB is the only candidate key.

=> key attributes =A,B and

=> non-key attributes = C,D,E.

Key attributes are also called prime attributes and non-key attributes are also called non-prime

attributes.AB->C is not a Partial dependency // it is full dependency.

B-> E is a partial dependency, since B is a part of the candidate key and E is a non-key attribute.

Differences between Full Functional Dependency (FFD) and Partial Functional Dependency

(PFD):

Prepared By Dr. Satyanarayana. Mummana, Professor, LIET

Full Functional Dependency Partial Functional Dependency

A functional dependency X->Y is a fully

functional dependency if Y is functionally

dependent on X and Y is not functionally

dependent on any proper subset of X.

A functional dependency X->Y is a partial

dependency if Y is functionally dependent

on X and Y can be determined by any proper

subset of X.

In full functional dependency, the non-

prime attribute is functionally dependent on

the candidate key.

In partial functional dependency, the non-

prime attribute is functionally dependent on

part of a candidate key.

In fully functional dependency, if we

remove any attribute of X, then the

dependency will not exist anymore.

In partial functional dependency, if we

remove any attribute of X, then the

dependency will still exist.

Full Functional Dependency equates to the

normalization standard of Second Normal

Form.

Partial Functional Dependency does not

equate to the normalization standard of

Second Normal Form. Rather, 2NF

eliminates the Partial Dependency.

An attribute A is fully functional dependent

on another attribute B if it is functionally

dependent on that attribute, and not on any

part (subset) of it.

An attribute A is partially functional

dependent on other attribute B if it is

functionally dependent on any part (subset)

of that attribute.

Functional dependency enhances the quality

of the data in our database.

Partial dependency does not enhance the

data quality. It must be eliminated in order

to normalize in the second normal form.

4. Transitive Functional Dependency:

In transitive functional dependency, dependent is indirectly dependent on determinant.i.e. If A →

B &B →C, then according to axiom of transitivity, A → C. This is a transitive functional

dependency.

Prime and non-prime attributes: Attributes which are parts of any candidate key of relation are

called as prime attribute, others are non-prime attributes.

Candidate Key: Candidate Key is minimal set of attributes of a relation which can be used to

identify a tuple uniquely.

Consider student table: student(sno, sname,sphone,age) we can take sno as candidate key. we can

have more than 1 candidate key in a table.

Types of candidate keys:

Prepared By Dr. Satyanarayana. Mummana, Professor, LIET

1. simple(having only one attribute)

2. composite(having multiple attributes as candidate key)

Super Key:Super Key is set of attributes of a relation which can be used to identify a tuple uniquely.

• Adding zero or more attributes to candidate key generates super key.

• A candidate key is a super key but vice versa is not true.

Consider student table: student(sno, sname,sphone,age).we can take sno, (sno, sname) as super key.

Finding candidate keys problems: or Attribute Closure:

Consider the relation scheme R = {E, F, G, H, I, J, K, L, M, M} and the set of functional

dependencies {{E, F} -> {G}, {F} -> {I, J}, {E, H} -> {K, L}, K -> {M}, L -> {N} on R.

What is the key for R?

Answer: Finding attribute closure of all given options, we get:

{E,F}+ = {EFGIJ}

{E,F,H}+ = {EFHGIJKLMN}

{E,F,H,K,L}+ = {{EFHGIJKLMN}

{E}+ = {E}

{EFH}+ and {EFHKL}+ results in set of all attributes, but EFH is minimal. So it will be candidate

key.

Consider a relation scheme R = (A, B, C, D, E, H) on which the following functional dependencies

hold:

{A–>B, BC–> D, E–>C, D–>A}. What are the candidate keys of R?

Normal Forms:

Normalization is the process of minimizing redundancy from a relation or set of relations.

Normalization is the process of organizing the data in the database. Redundancy in relation may

cause insertion, deletion, and update anomalies. So, it helps to minimize the redundancy in relations.

Normalization divides the larger table into the smaller table and links them using relationship.

Types of Normal Forms:

• First Normal Form(1NF)

• Second Normal Form(2NF)

• Third Normal Form(3NF)

• Boyce and Codd Normal Form (BCNF)

• Fourth Normal Form(4NF)

• Fifth normal form (5NF)

• Domain-key normal form or DKNF

• Sixth normal form or (6NF)

Prepared By Dr. Satyanarayana. Mummana, Professor, LIET

First Normal Form(1NF):

A relation is in 1NF if it contains an atomic value. or It must hold only single-valued attribute. A

relation is in first normal form if every attribute in that relation is singled valued attribute. It states

that an attribute of a table cannot hold multiple values. A relation is in first normal form if it does

not contain any composite or multi-valued attribute. First normal form disallows the multi-valued

attribute, composite attribute, and their combinations.

Example: First Normal Form.

roll_no name subject

101 Anil AWS, Python

103 smith Java

102 peter ML, AI

But out of the 3 different students in our table, 2 have opted for more than 1 subject.And we have

stored the subject names in a single column. But as per the 1st Normal form each column must

contain atomic value. Here is our updated table and it now satisfies the First Normal Form.

roll_no Name subject

101 Anil AWS

101 Anil Python

103 smith Java

102 peter ML

102 peter AI

By doing so, although a few values are getting repeated but values for the subject column are now

atomic for each record/row. using the First Normal Form, data redundancy increases, as there will

be many columns with same data in multiple rows but each row as a whole will be unique.

Example:

Domain Courses

Programming Java, C

Web designing PHP, HTML

The above table consist of multiple values in single columns which can be reduced into

atomic values by using first normal form as follows

Domain Courses

Programming Java

Programming C

Web designing PHP

Prepared By Dr. Satyanarayana. Mummana, Professor, LIET

Web designing HTML

Second Normal Form :(2NF) :

A relation will be in 2NF if it is in 1NF and all non-key attributes are fully functional dependent on

the primary key. In the second normal form, all non-key attributes are fully functional dependent

on the primary key. A relation is in 2NF if it has No Partial Dependency, i.e., no non-prime attribute

(attributes which are not part of any candidate key) is dependent on any proper subset of any

candidate key of the table. In second normal form non-prime attributes should not depend on proper

subset of key attributes.

Fully Functional Dependency (FFD): If X and Y are an attribute set of a relation, Y is fully

functional dependent on X, if Y is functionally dependent on X but not on any proper subset of X.

Partial Dependency (PFD): If the proper subset of candidate key determines non-prime attribute, it

is called partial dependency.

Example: Consider following functional dependencies in relation R (A, B , C, D)

AB → C [A and B together determine C]

BC → D [B and C together determine D]

In the above relation, AB is the only candidate key and there is no partial dependency, i.e., any

proper subset of AB doesn’t determine any non-prime attribute.

Example:

Student id Student name Project Id Project name

101 smith P1 x

102 john P2 y

Here (student id, project id) are key attributes and (student name, project name) are non-prime

attributes. It is decomposed as

Student id Student name Project id

101 smith P1

102 john P2

Project id Project name

P1 x

Prepared By Dr. Satyanarayana. Mummana, Professor, LIET

P2 y

Third Normal Form:

A relation is said to be in third normal form , if it is already in second normal form and no transitive

dependencies exists.

3NF is used to reduce the data duplication. It is also used to achieve the data integrity. If there is no

transitive dependency for non-prime attributes, then the relation must be in third normal form.

Update anomaly is caused by a transitive dependency.

A relation is in third normal form, if there is no transitive dependency for non-prime attributes as

well as it is in second normal form.

Let R be a relation schema, X be a subset of the attributes of R, and A be an attribute of R. R is in

third normal form if for every FD X → A that holds over R, one of the following statements is true:

•A ∈ X; that is, it is a trivial FD, or

•X is a super key, or

•A is part of some key for R

OR

A relation is in 3NF if at least one of the following condition holds in every non-trivial function

dependency X –> Y

1. X is a super key.

2. Y is a prime attribute, i.e., each element of Y is part of some candidate key.

Transitive Functional dependency (TFD): If A→B and B→C are two FDs then A→C is called

transitive dependency.

Transitive Dependencies

Suppose that a dependency X → A causes a violation of 3NF. There are two cases:

1.X is a proper subset of some key K. Such a dependency is sometimes called a partial dependency.

Prepared By Dr. Satyanarayana. Mummana, Professor, LIET

2.X is not a proper subset of any key. Such a dependency is sometimes called a transitive

dependency because it means we have a chain of dependencies K → X → A. The problem is that

we cannot associate an X value with a K value unless we also associate an A value with an X value.

Boyce-Codd Normal Form (BCNF):Let R be a relation schema, X be a subset of the attributes of

R, and let A be an attribute of R. R is in Boyce-Codd normal form if for every FD X → A that holds

over R, one of the following statements is true:

• A ∈ X; that is, it is a trivial FD, or

• X is a superkey

OR

a relation schema R in BCNF with respect to a set F of functional dependencies if ,for all functional

dependencies they are in the form of x→A where X,B subset of R at least one of the following

holds :

• X→A is trival FD (ie A subset of X)

• X is the super key for schema R

a relation is in BCNF every determinant is a candidate key. if non-prime attribute determine the one

or more prime attribute then the relation not in BCNF.

FDs in a BCNF Relation

SID Major Advisor

123 physics faculty1

123 music faculty2

456 Bio faculty3

789 physics faculty4

999 physics faculty1

There are two FDs in this Relation

• SID Major →Advisor

• Advisor →Major

Std_adv(SID,Advisor)

Adv_maj(Advisior,Major)

SID Advisor

123 faculty1

123 faculty2

456 faculty3

789 F faculty4

999 faculty1

Advidor Major

Prepared By Dr. Satyanarayana. Mummana, Professor, LIET

faculty1 physics

faculty2 music

faculty3 Bio

faculty4 Physics

**

Example: convert the following relation into 1NF,2NF,3NF

so to avoid the repeating groups develop the following relation.

SID sname Caddr major CID Ctitle Iname Iloc grade

111 Anil 208 west IS IS11 DBMS SB 203 east A

111 Anil 208 west IS IS22 SAD AR 204 West B

222 Adhir 104 East IT IS11 DBMS SB 203 East C

222 Adhir 104 East IT IT22 COA SB 203 East B

222 Adhir 104 East IT IT33 C HK 209 South A

Relation name: Grade Report relation in 1NF

Second Normal Form:(2NF): in the above Grade relation there are 4 FDs

• SID-->Snsme ,Caddr,Major

• CID-->Ctitle,Iname,Iloc

• SID,CID-->Grade

• Iname-->Iloc

key: composite key is(SID,CID)

In the above grade Report relation is not in the 2NF because of there is a trival dependency exists.

CID→Ctitle,Iname,Iloc

Iname→Iloc .Here CID determines Iname and Iname determines Iloc is the transitive Dependency.

 To remove the partial dependencies decompose the relation into smaller relations. decompose the

Grade Report relation into three relations they are Student Relation, Course Relation, Registration

relation.

Student Relation

SID Snsme Caddr Major

111 Anil 208 west IS

222 Adhir 104 East IT

 Course Relation

CID Ctitle Iname Iloc

 IS11 DBMS SB 203 east

IS22 SAD AR 204 West

IS11 DBMS SB 203 East

IT22 COA SB 203 East

IT33 C HK 209 South

CID →Ctitle

CID→Iname

CID→Iloc

Prepared By Dr. Satyanarayana. Mummana, Professor, LIET

Iname→Iloc is transitive dependency hence course relation not in 3NF But it is in 2NF

Registration relation

SID CID Grade

111 IS11 A

111 IS22 B

222 IS11 C

222 IT22 B

222 IT33 A

Multivalued Dependency (MVD) and define Fourth Normal Form:

Definition: A multivalued dependency specified on relation schema R, where X and Y

are both subsets of R, specifies the following constraint on any relation state r of R: If two tuples t1

and t2 exist in r such that t1[X] = t2[X], then two tuples t3 and t4 should also exist in r with the

following properties, where we use Z to denote (R – (X ∪ Y))

• t3[X] = t4[X] = t1[X] = t2[X].

• t3[Y] = t1[Y] and t4[Y] = t2[Y].

• t3[Z] = t2[Z] and t4[Z] = t1[Z].

Whenever holds, we say that X multidetermines Y. Because of the symmetry in the

definition, whenever holds in R, so does Hence, implies

 , and therefore it is sometimes written as

An MVD in R is called a trivial MVD if (a) Y is a subset of X, or (b) X ∪ Y = R.

For example, the relation EMP_PROJECTS in Figure has the trivial MVD

. An MVD that satisfies neither (a) nor (b) is called a nontrivial MVD.

Fig:The EMP relation with two MVDs: and

Fourth Normal Form (4NF)

Definition. A relation schema R is in 4NF with respect to a set of dependencies F (that includes

functional dependencies and multivalued dependencies) if, for every nontrivial multivalued

dependency in F+ X is a superkey for R

• An all-key relation is always in BCNF since it has no FDs.

Prepared By Dr. Satyanarayana. Mummana, Professor, LIET

• An all-key relation such as the EMP relation in ABOVE Figure which has no FDs but

has the MVD Ename →→ Pname | Dname, is not in 4NF.

• A relation that is not in 4NF due to a nontrivial MVD must be decomposed to convert

it into a set of relations in 4NF.

• The decomposition removes the redundancy caused by the MVD

The process of normalizing a relation involving the nontrivial MVDs that is not in 4NF consists of

decomposing it so that each MVD is represented by a separate relation where it becomes a trivial

MVD. Consider the EMP relation in Figure EMP is not in 4NF because in the nontrivial MVDs

and , and Ename is not a superkey of EMP.

Fig:Decomposing the EMP relation into two 4NF relations EMP_PROJECTS and

EMP_DEPENDENTS.We decompose EMP into EMP_PROJECTS and EMP_DEPENDENTS,

shown in above Figure. Both EMP_PROJECTS and EMP_DEPENDENTS are in 4NF, because

the MVDs in EMP_PROJECTS and in

EMP_DEPENDENTS are trivial MVDs

Decomposition: It is the process of splitting original table into smaller relations such that attribute

sets of two relations will be the subset of attribute set of original table.

Rules of decomposition:

If ‘R’ is a relation splitted into ‘R1’ and ‘R2’ relations, the decomposition done should satisfy

following

1) Union of two smaller subsets of attributes gives all attributes of ‘R’.

 R1(attributes)UR2(attributes)=R(attributes)

2) Both relations interaction should not give null value.

 R1(attributes)∩R2(attributes)!=null

 3) Both relations interaction should give key attribute.

 R1(attribute)∩R2(attribute)=R(key attribute)

Properties of decomposition:

Prepared By Dr. Satyanarayana. Mummana, Professor, LIET

Lossless decomposition: while joining two smaller tables no data should be lost and should satisfy

all the rules of decomposition. No additional data should be generated on natural join of

decomposed tables.

No information is lost from the original relation during decomposition.When the sub relations are

joined back, the same relation is obtained that was decomposed.Every decomposition must always

be lossless.

•Consider there is a relation R which is decomposed into sub relations R1 , R2 , …. , Rn.

•This decomposition is called lossless join decomposition when the join of the sub relations

results in the same relation R that was decomposed.

•For lossless join decomposition, we always have-

R1 ⋈ R2 ⋈ R3 ……. ⋈ Rn = R

where ⋈ is a natural join operator

Lossless Join Decomposition:

Prepared By Dr. Satyanarayana. Mummana, Professor, LIET

Example:Consider the following relation R(A , B , C)-

Prepared By Dr. Satyanarayana. Mummana, Professor, LIET

A B C

1 2 1

2 5 3

3 3 3

R(A , B , C)

Consider this relation is decomposed into two sub relations R1(A , B) and R2(B , C)

The two sub relations are-

A B

1 2

2 5

3 3

R1(A , B)

B C

2 1

5 3

3 3

R2(B , C)

Now, let us check whether this decomposition is lossless or not.For lossless decomposition,

we must have

R1 ⋈ R2 = R

Now, if we perform the natural join (⋈) of the sub relations R1 and R2 , we get-

A B C

1 2 1

2 5 3

3 3 3

This relation is same as the original relation R.Thus, we conclude that the above decomposition is

lossless join decomposition.

Prepared By Dr. Satyanarayana. Mummana, Professor, LIET

NOTE: Lossless join decomposition is also known as non-additive join decomposition. This is

because the resultant relation after joining the sub relations is same as the decomposed relation. No

extraneous tuples appear after joining of the sub-relations.

2. Lossy Join Decomposition:

Consider there is a relation R which is decomposed into sub relations R1 , R2 , …. , Rn.This

decomposition is called lossy join decomposition when the join of the sub relations does not result

in the same relation R that was decomposed. The natural join of the sub relations is always found

to have some extraneous tuples. For lossy join decomposition, we always have

R1 ⋈ R2 ⋈ R3 ……. ⋈ Rn ⊃ R where ⋈ is a natural join operator.

Example:Consider the following relation R(A , B , C)

A B C

1 2 1

2 5 3

3 3 3

R(A , B , C)

Consider this relation is decomposed into two sub relations as R1(A , C) and R2(B , C)

The two sub relations are

A C

1 1

Prepared By Dr. Satyanarayana. Mummana, Professor, LIET

2 3

3 3

R1(A , B)

 B C

2 1

5 3

3 3

R2(B , C)

Now, let us check whether this decomposition is lossy or not.For lossy decomposition, we must

have R1 ⋈ R2 ⊃ R Now, if we perform the natural join (⋈) of the sub relations R1 and R2 we

get

A B C

1 2 1

2 5 3

2 3 3

3 5 3

3 3 3

This relation is not same as the original relation R and contains some extraneous tuples.Clearly,

R1 ⋈ R2 ⊃ R. Thus, we conclude that the above decomposition is lossy join decomposition.

NOTE:Lossy join decomposition is also known as careless decomposition. This is because

extraneous tuples get introduced in the natural join of the sub-relations. Extraneous tuples make the

identification of the original tuples difficult.

Dependency preservation:

functional dependencies should be satisfied even after splitting relations and they should be satisfied

by any of splitted tables. Dependency Preservation A Decomposition D = { R1, R2, R3….Rn } of

R is dependency preserving w.r.t a set F of Functional dependency if (F1 ∪ F2 ∪ … ∪ Fm)+ = F+.

Consider a relation R R ---> F{...with some functional dependency(FD)....} R is decomposed or

divided into R1 with FD { f1 } and R2 with { f2 }, then there can be three cases:

f1 U f2 = F -----> Decomposition is dependency preserving.

f1 U f2 is a subset of F -----> Not Dependency preserving.

 f1 U f2 is a super set of F -----> This case is not possible.

Prepared By Dr. Satyanarayana. Mummana, Professor, LIET

lack of redundancy: It is also known as repetition of information. The proper decomposition should

not suffer from any data redundancy.

